lithium bromide eros rl062


LITHIUM BROMIDE 1
LiBr-mediated decomposition of dioxaphospholanes results in
Lithium Bromide1
the exclusive formation of the epoxide, whereas the thermal
decomposition produces a mixture of products (eq 4).8
LiBr
OH
[7550-35-8] BrLi (MW 86.85)
1. (EtO)2PPh3
Ph
OH
Ph
(4)
InChI = 1/BrH.Li/h1H;/q;+1/p-1/fBr.Li/h1h;/q-1;m Ph
O
2. LiBr, rt
Ph
InChIKey = AMXOYNBUYSYVKV-PMQAFHISCD
97%
(source of nucleophilic bromide;2 mild Lewis acid;1 salt effects
Protection of alcohols as their MOM ethers can be achieved
in organometallic reactions;1 epoxide opening1)
using a mixture of Dimethoxymethane, LiBr, and p-Toluenesulfo-
ć% ć%
Physical Data: mp 550 C; bp 1265 C; d 3.464 g cm-3.
nic Acid.9
ć%
Solubility: 145 g/100 mL H2O (4 C); 254 g/100 mL H2O
ć% ć%
(90 C); 73 g/100 mL EtOH (40 C); 8 g/100 mL MeOH; sol
Bifunctional Reagents. Activated Ä…-bromo ketones are
ether, glycol, pentanol, acetone; slightly sol pyridine.
smoothly converted into the corresponding silyl enol ethers when
Form Supplied in: anhyd white solid, or as hydrate.
treated with a mixture of LiBr/R3N/Chlorotrimethylsilane.10
ć%
Purification: dryfor 1hat 120 C/0.1 mmHg before use; or dry
Aldehydes are converted into the corresponding Ä…,²-unsaturated
ć%
by heating in vacuo at 70 C (oil bath) for 24 h, then store at
esters using Triethyl Phosphonoacetate and Triethylamine in the
ć%
110 C until use.
presence of LiBr (eq 5).11,12 Similar conditions were extensively
Handling, Storage, and Precautions: for best results, dry before
used in the asymmetric cycloaddition and Michael addition reac-
use in anhyd reactions.
tions of N-lithiated azomethine ylides (eq 6).13
Et3N, MX
O O
O
MeCN
EtO P
CO2Et
+ (5)
Original Commentary
OEt
Ph
EtO
Ph H
25 °C, 3 h
MX = LiCl, 77%; LiBr, 93%; MgCl2, 15%; MgBr2, 71%
André B. Charette
Université de Montréal, Montréal, Québec, Canada
Alkyl and Alkenyl Bromides. LiBr has been extensively used
1. LiBr, DBU
t-Bu N CO2Me
as a source of bromide in nucleophilic substitution and addi-
2. CO2Me
tion reactions. Interconversion of halides2 and transformation
61%
of alcohols to alkyl bromides via the corresponding sulfonate3
t-Bu N CO2Me (6)
or trifluoroacetate4 have been widely used in organic synthesis.
Primary and secondary alcohols have been directly converted to
CO2Me
alkyl bromides upon treatment with a mixture of Triphenylphos-
phine, Diethyl Azodicarboxylate, and LiBr.5
(Z)-3-Bromopropenoates and -propenoic acids have been
synthesized stereoselectively by the reaction of LiBr and propio- Additive for Organometallic Transformations. The addi-
lates or propiolic acid (eq 1).6 tion of LiBr and Lithium Iodide was shown to enhance the rate
of organozinc formation from primary alkyl chlorides, sulfonates,
LiBr, AcOH
Br CO2Et
and phosphonates, and Zinc dust.14 Beneficent effects of LiBr
(1)
CO2Et
70 °C, 15 h
addition have also been reported for the Heck-type coupling reac-
91%
tions15 and for the nickel-catalyzed cross-couplings of alkenyl and
Ä…-metalated alkenyl sulfoximines with organozinc reagents.16 The
addition of 2 equiv of LiBr significantly enhances the yield of the
Heterolytic Cleavage of C X Bonds. In the presence of a
conjugate addition products in reactions of certain organocopper
Lewis acid, LiBr acts as a nucleophile in the opening of 1,2-
reagents (eq 7).17
oxiranes to produce bromohydrins (eq 2).7 In the absence of an
external Lewis acid or nucleophile, epoxides generally give rise
OO
to products resulting from ring-contraction reactions (eq 3).
MeCu(PCy2)Li
(7)
OH
LiBr, AcOH
(2)
O
THF, rt LiBr (0 equiv), 61%
Br
90%
LiBr (2 equiv), 96%
LiBr, alumina
Finally, concentrated solutions of LiBr are also known to alter
(3)
O CHO
significantly the solubility and the reactivity of amino acids and
toluene, reflux
77% peptides in organic solvents.18
Avoid Skin Contact with All Reagents
2 LITHIUM BROMIDE
First Update Allenes functionalized with electron withdrawing groups are
hydrohalogenated across the Ä…,² carbon-carbon double bond
J. Kent Barbay & Wei He
with LiBr (or lithium chloride) and acetic acid, yielding vinyl
Johnson & Johnson Pharmaceutical Research & Development,
bromides (eq 11).24 Dibromination of allenes to substituted 2,
Spring House, PA, USA
3-dibromoprop-1-enes occurs upon treatment with LiBr, catalytic
palladium(II) acetate, 1,4-benzoquinone, and acetic acid.25
A recent review highlights the synthetic utility of lithium
bromide.19
LiBr·H2O
Br
CO2Me (11)
CO2Me
AcOH
Alkyl and Alkenyl Bromides. The combination of LiBr with
86%
an oxidant has been employed as a source of electrophilic bromine.
The reagent combination LiBr/(diacetoxyiodo)benzene monobro-
minates electron rich aromatic and heteroaromatic compounds,
Lithium chloride, sodium iodide, and LiBr open methylenecy-
converts Å‚,´-unsaturated carboxylic acids to bromomethyl buty-
clopropanes to homoallylic halides in the presence of acetic acid,26
rolactones (eq 8) and dibrominates olefins.20
whereas substituted internal cyclopropenes give ring-opened,
alkylated adducts when treated with LiBr (or sodium iodide) and
O
an alkyl halide electrophile (eq 12).27
LiBr, PhI(OAc)2
O
(8)
CO2H
THF Br
89%
Ph Br
CO2Me
MeO2C LiBr, Li2CO3
Vinyl bromides are produced by oxidative halodecarboxylation
acetone, reflux
64%
of Ä…,²-unsaturated carboxylic acids using LiBr in the presence
of cerium(IV) ammonium nitrate (eq 9).21 The same reagent
combination brominates electron rich aryl compounds.22 MeO2C CO2Me
(12)
Ph
Br
CO2H
LiBr, CAN
CH3CN, H2O
The combination of LiBr and Amberlyst 15 resin converts
MeO
81%
Ä…,²-epoxy ketones to Ä…-bromo-Ä…,²-unsaturated ketones,28 while
Br
allylic epoxides are ring-opened to halohydrins.29
(9)
MeO
Heterolytic Cleavage of C X Bonds. Lithium bromide
catalyzes the opening of epoxides by aliphatic amines and anilines
at ambient temperature under solvent-free conditions.30 In the
Dibromination of n-pentenyl glycosides occurred in high yield
presence of carbon dioxide (atmospheric pressure), LiBr catalyzes
using a combination of LiBr/copper(II) bromide; for these
conversion of epoxides to cyclic carbonates.31
substrates lower yields were observed with CuBr2 alone or with
Selective cleavage of one alkoxycarbonyl group of N,
a variety of other reagents (eq 10).23
N-dicarbamoyl-protected amines was achieved by means of LiBr
OBn in refluxing acetonitrile.32
O
LiBr, CuBr2
BnO
O
BnO
Weak Lewis Acid. Lithium bromide is used as a mild Lewis
CH3CN, THF
O
N
acid in a variety of reactions. For example, this reagent was used
99%
O
in the Pictet-Spengler cyclization of a highly functionalized imine
(eq 13).33 In this reaction, carbon-carbon bond formation occurs
without reaction or loss of stereochemical integrity of the Ä…-amino
nitrile functionality.
OBn
Br
Lithium bromide catalyzes the one-pot condensation of aldehy-
O
BnO
O Br (10)
des, ²-keto esters, and ureas to form dihydropyrimidinones (Big-
BnO
O
inelli reaction, eq 14).34 LiBr is also a suitable Lewis acid for pro-
N
motion of the one-pot Bischler-Möhlau indole synthesis (eq 15).35
O
LiBr interacts with and can influence the reactivity of enolates
and other basic species. For instance, LiBr demonstrated a ben-
eficial effect on enantioselectivity in asymmetric alkylation of
Alternative reagents Yields (%)
ketones36 and lactams37 using a chiral lithium amide base. In the
cyclopropanation of Ä…,²-unsaturated amides and esters by allylic
Br2
10
ylides, the combination of LiBr and sodium hexamethyldisilazide
20
Br2/Et4NBr
results in a reversal of diastereoselectivity when compared to the
85
NBS/Et4NBr
use of potassium hexamethyldisilazide (eq 16).38
A list of General Abbreviations appears on the front Endpapers
LITHIUM BROMIDE 3
CO2Me
OCH3
CH3
KN(SiMe3)2
CH3
THF
H3CO OCH3 HO
-78 °C to rt
Na2SO4 Ph SiMe3
87%
OCH3
+
TBSO
diastereoselectivity > 99:1
CH2Cl2
i-Bu2Te SiMe3
H2N
FmocHN CHO Br
H
H (16)
+
NC N
H
CO2Me
CO2Me
Ph
93%
CH3
NaN(SiMe3)2
Ph SiMe3
LiBr, THF
H3CO OCH3
OCH3
-78 °C to rt
diastereoselectivity < 1:99
HO CH3
TBSO
LiBr, DME
35 °C
FmocHN OCH3
H
72%
N
H
1. Loupy, A.; Tchoubar, B. Salt effects in Organic and Organometallic
NC N
Chemistry; VCH: Weinheim, 1992.
H
2. Sasson, Y.; Weiss, M.; Loupy, A.; Bram, G.; Pardo, C., J. Chem. Soc.,
Chem. Commun. 1986, 1250.
3. (a) Ingold, K. U.; Walton, J. C., J. Am. Chem. Soc. 1987, 109, 6937.
CH3
(b) McMurry, J. E.; Erion, M. D., J. Am. Chem. Soc. 1985, 107, 2712.
H3CO OCH3
OCH3
4. Camps, F.; Gasol, V.; Guerrero, A., Synthesis 1987, 511.
HO CH3 5. Manna, S.; Falck, J. R. Mioskowski, C., Synth. Commun. 1985, 15, 663.
TBSO
6. (a) Ma, S.; Lu, X., Tetrahedron Lett. 1990, 31, 7653. (b) Ma, S.; Lu, X.,
(13)
J. Chem. Soc., Chem. Commun. 1990, 1643.
FmocHN OCH3
H
7. (a) Bonini, C.; Giuliano, C.; Righi, G.; Rossi, L., Synth. Commun. 1992,
HN
22, 1863. (b) Shimizu, M.; Yoshida, A.; Fujisawa, T., Synlett 1992, 204.
H
(c) Bajwa, J. S.; Anderson, R. C., Tetrahedron Lett. 1991, 32, 3021.
NC N
8. (a) Murray, W. T.; Evans, S. A., Jr., Nouv. J. Chim. 1989, 13, 329.
H
(b) Murray, W. T.; Evans, S. A., Jr., J. Org. Chem. 1989, 54, 2440.
9. Gras, J.-L.; Chang, Y.-Y. K. W.; Guérin, A., Synthesis 1985, 74.
99% ee
10. Duhamel, L.; Tombret, F.; Poirier, J. M., Org. Prep. Proced. Int. 1985,
17, 99.
11. Rathke, M. W.; Nowak, M., J. Org. Chem. 1985, 50, 2624.
O 12. Seyden-Penne, J., Bull. Soc. Chem. Fr. 1988, 238.
O O LiBr
PhCHO
+ +
13. (a) Kanemasa, S.; Tatsukawa, A.; Wada, E., J. Org. Chem. 1991, 56,
THF
H2N NH2 reflux
H3C OEt
2875. (b) Kanemasa, S.; Uchida, O.; Wada, E., J. Org. Chem. 1990, 55,
90% 4411. (c) Kanemasa, S.; Yoshioka, M.; Tsuge, O., Bull. Chem. Soc. Jpn.
1989, 62, 869. (d) Kanemasa, S.; Yamamoto, H.; Wada, E.; Sakurai, T.;
Urushido, K., Bull. Chem. Soc. Jpn. 1990, 63, 2857.
Ph
14. Jubert, C.; Knochel, P., J. Org. Chem. 1992, 57, 5425.
EtO2C
15. (a) Cabri, W.; Candiani, I.; DeBernardinis, S.; Francalanci, F.; Penco, S.,
NH (14)
J. Org. Chem. 1991, 56, 5796. (b) Karabelas, K.; Hallberg, A., J. Org.
H3C N O Chem. 1989, 54, 1773.
H
16. Erdelmeier, I.; Gais, H.-J., J. Am. Chem. Soc. 1989, 111, 1125.
17. Bertz, S. H.; Dabbagh, G., J. Org. Chem. 1984, 49, 1119.
18. Seebach, D., Aldrichim. Acta 1992, 25, 59.
OMe
19. Rudrawar, S., Synlett 2005, 7, 1197.
20. Braddock, D. C.; Cansell, G.; Hermitage, S. A., Synlett 2004, 3, 461.
CH3 LiBr, NaHCO3
+ Cl
21. Roy, S. C.; Guin, C.; Maiti, G., Tetrahedron Lett. 2001, 42, 9253.
EtOH, reflux
O
74% 22. Roy, S. C.; Guin, C.; Rana, K. K.; Maiti, G., Tetrahedron Lett. 2001, 42,
MeO NH2
6941.
23. Rodebaugh, R.; Debenham, J. S.; Fraser-Reid, B.; Snyder, J. P., J. Org.
Chem. 1999, 64, 1758.
OMe
CH3
24. Ma, S.; Shi, Z.; Li, L., J. Org. Chem. 1998, 63, 4522.
25. Bäckvall, J.-E.; Jonasson, C., Tetrahedron Lett. 1997, 38, 291.
(15)
26. Huang, J.-W.; Shi, M., Tetrahedron 2004, 60, 2057.
N
MeO
H
27. Ma, S.; Zhang, J.; Cai, Y.; Lu, L., J. Am. Chem. Soc. 2003, 125, 13954.
Avoid Skin Contact with All Reagents
4 LITHIUM BROMIDE
28. Righi, G.; Bovicelli, P.; Sperandio, A., Tetrahedron Lett. 1999, 40, 34. (a) Baruah, P. P.; Gadhwal, S.; Prajapati, D.; Sandhu, J. S., Chem. Lett.
5889. 2002, 10, 1038. (b) Maiti, G.; Kundu, P.; Guin, C., Tetrahedron Lett.
2003, 44, 2757.
29. Antonioletti, R.; Bovicelli, P.; Fazzolari, E.; Righi, G., Tetrahedron Lett.
2000, 41, 9315. 35. Pchalek, K.; Jones, A. W.; Wekking, M. M. T.; Black, D. S., Tetrahedron
2005, 61, 77.
30. Chakraborti, A. K.; Rudrawar, S.; Kondaskar, A., Eur. J. Org. Chem.
2004, 3597. 36. Murakata, M.; Yasukata, T.; Aoki, T.; Nakajima, M.; Koga, K.,
Tetrahedron 1998, 54, 2449.
31. Iwasaki, T.; Kihara, N.; Endo, T., Bull. Chem. Soc. Jpn. 2000, 73, 713.
37. Matsuo, J.; Kobayashi, S.; Koga, K., Tetrahedron Lett. 1998, 39, 9723.
32. Hernández, J. N.; Ramírez, M. A.; Martín, V. S., J. Org. Chem. 2003,
68, 743. 38. Tang, Y.; Huang, Y.-Z.; Dai, L.-X.; Chi, Z.-F.; Shi, L.-P., J. Org. Chem.
1996, 61, 5762.
33. Myers, A. G.; Kung, D. W., J. Am. Chem. Soc. 1999, 121, 10828.
A list of General Abbreviations appears on the front Endpapers


Wyszukiwarka

Podobne podstrony:
benzyl bromide eros rb047
zinc bromide eros rz005
sodium bromide eros rs054
lithium chloride eros rl076
aluminum bromide eros ra077
copper I bromide eros rc207
tetrabutylammonium bromide eros rt011
thionyl bromide eros rt098
copper II bromide eros rc206
oxalyl bromide eros ro014
allyl bromide eros ra045
lithium alumnium hydride eros rl036
lithium eros rl034
lithium?rbonate eros rl074
phenylcopper eros rp058
peracetic?id eros rp034
palladium on?rium sulfate eros rp003
iodine eros ri005
palladium II?etate eros rp001

więcej podobnych podstron