cal ozn

Ca oznaczona
lka
Niech F (x) b� funkcj� pierwotn� funkcji
edzie a a
f(x) określonej i ograniczonej w przedziale
[a, b]. Ca a oznaczon� funkcji f(x) w prze-
lk� a
dziale [a, b] nazywamy F (b) - F (a), przyrost
funkcji F (x) w przedziale [a, b], i oznaczamy

b
f(x)dx = F (x)|b = F (b) - F (a).
a
a
Podstawowe twierdzenie
rachunku ca
lkowego
Jeżeli funkcja f jest ciag i nieujemna w
� la
przedziale [a, b] to PR, pole obszaru
R = {(x, y) : a d" x d" b, 0 d" y d" f(b)},
określone jest równaniem

b
PR = f(x)dx.
a
Caka oznaczona w skończonym przedziale
wyraża zatem pole z uwzgl�
ednieniem znaku -
ta cz�ść pola, która znajduje si� pod osia brana
e e �
jest ze znakiem ujemnym. L� jest to wi�
acznie ec
różnica pól, o ile wykres jest pod osia i nad osia
� �
OX.

Wyszukiwarka

Podobne podstrony:
cal
function cal from jd
OZN
5 Ozn Zaw C i Próch
cw 3 ozn granicy wybuchowosci dsz
ozn granic wybuch
function cal to jd
cal alarm
ozn temp zap tw

więcej podobnych podstron