stp2n60 tranzystor


STP2N60
STP2N60FI
N - CHANNEL ENHANCEMENT MODE
POWER MOS TRANSISTOR
TYPE V R I
DSS DS(on) D
STP2N60 600 V < 3.5 &! 2.9 A
STP2N60FI 600 V < 3.5 &! 2.2 A
TYPICAL RDS(on) = 3.2 &!
AVALANCHE RUGGED TECHNOLOGY
100% AVALANCHE TESTED
REPETITIVE AVALANCHE DATA AT 100oC
3
3
APPLICATION ORIENTED
2
2
1
1
CHARACTERIZATION
APPLICATIONS
TO-220 ISOWATT220
HIGH CURRENT, HIGH SPEED SWITCHING
SWITCH MODE POWER SUPPLIES (SMPS)
CHOPPER REGULATORS, CONVERTERS,
MOTOR CONTROL, LIGHTING FOR
INDUSTRIAL AND CONSUMER
ENVIRONMENT
INTERNAL SCHEMATIC DIAGRAM
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
STP2N60 STP2N60FI
VDS Drain-source Voltage (VGS = 0) 600 V
VDG R Drain- gate Voltage (RGS = 20 k&!)600 V
V Gate-source Voltage Ä… 20 V
GS
o
ID Drain Current (continuous) at Tc = 25 C2.9 2.2 A
o
ID Drain Current (continuous) at Tc = 100 C1.7 1.3 A
I (" ) Drain Current (pulsed) 11 11 A
DM
o
P Total Dissipation at T = 25 C70 W
35
tot c
Derating Factor 0.56 0.28 W/oC
V Insulation Withstand Voltage (DC) çÅ‚ 2000 V
ISO
o
T Storage Temperature -65 to 150 C
stg
o
Tj Max. Operating Junction Temperature 150 C
(" ) Pulse width limited by safe operating area
December 1996 1/10
STP2N60/FI
THERMAL DATA
TO-220 ISOWATT220
o
R Thermal Resistance Junction-case Max 1.78 3.57 C/W
thj-case
o
R Thermal Resistance Junction-ambient Max 62.5 C/W
thj-amb
o
R Thermal Resistance Case-sink Typ 0.5 C/W
thc- sink
o
Tl Maximum Lead Temperature For Soldering Purpose 300 C
AVALANCHE CHARACTERISTICS
Symbol Parameter Max Value Unit
IAR Avalanche Current, Repetitive or Not-Repetitive 2.9 A
(pulse width limited by Tj max, ´ < 1%)
EAS Single Pulse Avalanche Energy 105 mJ
o
(starting T = 25 C, I = I , V = 50 V)
j D AR DD
E Repetitive Avalanche Energy 3.5 mJ
AR
(pulse width limited by Tj max, ´ < 1%)
IAR Avalanche Current, Repetitive or Not-Repetitive 1.7 A
o
(Tc = 100 C, pulse width limited by Tj max, ´ < 1%)
o
ELECTRICAL CHARACTERISTICS (T =25 C unless otherwise specified)
case
OFF
Symbol Parameter Test Conditions Min. Typ. Max. Unit
V(BR)DSS Drain-source ID = 250 µA VGS = 0 600 V
Breakdown Voltage
I Zero Gate Voltage V = Max Rating 25 µA
DSS DS
o
Drain Current (V = 0) V = Max Rating x 0.8 T = 125 C 250 µA
GS DS c
IGSS Gate-body Leakage VGS = Ä… 20 V Ä… 100 nA
Current (V = 0)
DS
ON (")
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VGS(th) Gate Threshold Voltage VDS = VGS ID = 250 µA2 3 4 V
R Static Drain-source On V = 10V I = 1.5 A 3.2 3.5 &!
DS(on) GS D
Resistance
ID(on) On State Drain Current VDS > ID(on) x RDS(on)max 2.9 A
V = 10 V
GS
DYNAMIC
Symbol Parameter Test Conditions Min. Typ. Max. Unit
gfs (") Forward VDS > ID(on) x RDS(on)max ID = 1.5 A 1 2.4 S
Transconductance
C Input Capacitance V = 25 V f = 1 MHz V = 0 450 600 pF
iss DS GS
C Output Capacitance 62 85 pF
oss
C Reverse Transfer 23 35 pF
rss
Capacitance
2/10
STP2N60/FI
ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON
Symbol Parameter Test Conditions Min. Typ. Max. Unit
td(on) Turn-on Time VDD = 35 V ID = 2 A 25 40 ns
tr Rise Time RG = 50 &! VGS = 10 V 110 150 ns
(see test circuit, figure 3)
(di/dt) Turn-on Current Slope V = 480 V I = 2.9 A 75 A/µs
on DD D
R = 50 &! V = 10 V
G GS
(see test circuit, figure 5)
Qg Total Gate Charge VDD = 480 V ID = 2.9 A VGS = 10 V 33 45 nC
Qgs Gate-Source Charge 7 nC
Q Gate-Drain Charge 13 nC
gd
SWITCHING OFF
Symbol Parameter Test Conditions Min. Typ. Max. Unit
t Off-voltage Rise Time V = 480 V I = 2.9 A 70 95 ns
r(Voff) DD D
t Fall Time R = 50 &! V = 10 V 20 30 ns
f G GS
tc Cross-over Time (see test circuit, figure 5) 100 130 ns
SOURCE DRAIN DIODE
Symbol Parameter Test Conditions Min. Typ. Max. Unit
ISD Source-drain Current 2.9 A
ISDM(" ) Source-drain Current 11 A
(pulsed)
V (") Forward On Voltage I = 2.9 A V = 0 2 V
SD SD GS
trr Reverse Recovery ISD = 2.9 A di/dt = 100 A/µs 500 ns
o
Time VDD = 80 V Tj = 150 C
Q Reverse Recovery (see test circuit, figure 5) 7 µC
rr
Charge
I Reverse Recovery 28 A
RRM
Current
(") Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %
(" ) Pulse width limited by safe operating area
Safe Operating Areas For TO-220 Safe Operating Areas For ISOWATT220
3/10
STP2N60/FI
Thermal Impedeance For TO-220 Thermal Impedance For ISOWATT220
Derating Curve For TO-220 Derating Curve For ISOWATT220
Output Characteristics Transfer Characteristics
4/10
STP2N60/FI
Transconductance Static Drain-source On Resistance
Gate Charge vs Gate-source Voltage Capacitance Variations
Normalized Gate Threshold Voltage vs Normalized On Resistance vs Temperature
Temperature
5/10
STP2N60/FI
Turn-on Current Slope Turn-off Drain-source Voltage Slope
Cross-over Time Switching Safe Operating Area
Accidental Overload Area Source-drain Diode Forward Characteristics
6/10
STP2N60/FI
Fig. 1: Unclamped Inductive Load Test Circuits Fig. 2: Unclamped Inductive Waveforms
Fig. 3: Switching Times Test Circuits For Fig. 4: Gate Charge Test Circuit
Resistive Load
Fig. 5: Test Circuit For Inductive Load Switching
And Diode Reverse Recovery Time
7/10
STP2N60/FI
TO-220 MECHANICAL DATA
mm inch
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.40 4.60 0.173 0.181
C 1.23 1.32 0.048 0.051
D 2.40 2.72 0.094 0.107
D1 1.27 0.050
E 0.49 0.70 0.019 0.027
F 0.61 0.88 0.024 0.034
F1 1.14 1.70 0.044 0.067
F2 1.14 1.70 0.044 0.067
G 4.95 5.15 0.194 0.203
G1 2.4 2.7 0.094 0.106
H2 10.0 10.40 0.393 0.409
L2 16.4 0.645
L4 13.0 14.0 0.511 0.551
L5 2.65 2.95 0.104 0.116
L6 15.25 15.75 0.600 0.620
L7 6.2 6.6 0.244 0.260
L9 3.5 3.93 0.137 0.154
DIA. 3.75 3.85 0.147 0.151
L2
Dia.
L5
L9
L7
L6 L4
P011C
8/10
E
A
D
C
D1
F1
G1
H2
G
F
F2
STP2N60/FI
ISOWATT220 MECHANICAL DATA
mm inch
DIM.
MIN. TYP. MAX. MIN. TYP. MAX.
A 4.4 4.6 0.173 0.181
B 2.5 2.7 0.098 0.106
D 2.5 2.75 0.098 0.108
E 0.4 0.7 0.015 0.027
F 0.75 1 0.030 0.039
F1 1.15 1.7 0.045 0.067
F2 1.15 1.7 0.045 0.067
G 4.95 5.2 0.195 0.204
G1 2.4 2.7 0.094 0.106
H 10 10.4 0.393 0.409
L2 16 0.630
L3 28.6 30.6 1.126 1.204
L4 9.8 10.6 0.385 0.417
L6 15.9 16.4 0.626 0.645
L7 9 9.3 0.354 0.366
Ø 3 3.2 0.118 0.126
L3
L6
L7
Ø
1 2 3
L2 L4
P011G
9/10
E
A
D
B
F1
F
G1
G
H
F2
STP2N60/FI
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No
license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned
in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
SGS-THOMSON Microelectronics products are not authorized for use as critical components in lifesupport devices or systems without express
written approval of SGS-THOMSON Microelectonics.
© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSONMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A
.
10/10


Wyszukiwarka

Podobne podstrony:
Powstał pierwszy, stabilny tranzystor na bazie pojedynczego atomu
W5 Tranzystor
Katalog tranzystorów
EDW tranzystory 07
tranzystor bipolarny Ćwiczenie 3 instrukcja elektronika
Jak bezpiecznie fotografować tranzyt Wenus 6 czerwca 2012 roku

więcej podobnych podstron