7368841141

7368841141



Zakład Biologii Molekularnej UMCS, luty 2015

Badanie wpływu antybiotyków na wzrost komórek bakterii E. coli i drożdży S. cerevisiae

Zdolność precyzyjnej translacji mRNA na białko jest jedną z podstawowych cech życia na Ziemi. Chociaż aparat translacyjny wykazuje znaczne podobieństwa między organizmami to jednak w toku ewolucji wykształciły się subtelne różnice w mechanizmie biosyntezy białka u prokariontów i eukariontów. Te różnice wykorzystano w medycynie, gdyż wiele związków selektywnie hamujących proces translacji u bakterii należy do najbardziej skutecznych antybiotyków stosowanych przez człowieka. Miejscem działania wielu chemicznie zróżnicowanych antybiotyków jest rybosom. Antybiotyki te wiążą się ze specyficznymi fragmentami rybosomu, wpływając w ten sposób na syntezę białka i wzrost komórek. Mutacje w niektórych białkach rybosomowych mogą powodować zmianę wrażliwości komórek na inhibitory translacji.

Celem ćwiczenia jest przebadanie wpływu niektórych antybiotyków (cykloheksimidu, chloramfenikolu, streptomycyny, kanamycyny, higromycyny B, paromomycyny, puromycyny) na wzrost komórek bakterii oraz mutantów drożdżowych pozbawionych różnych białek rybosomowych.

Chloramfenikol i cykloheksimid są inhibitorami aktywności peptydylotransferazy, odpowiednio, w podjednostce 50S rybosomów bakteryjnych i w podjednostce 60S rybosomów eukariotycznych. Z kolei higromycyna B i paromomycyna należą do antybiotyków aminoglikozydowych, działających zarówno na komórki bakteryjne jak i eukariotyczne, które wiążą się z rRNA małej podjednostki rybosom owej. Poprzez oddziaływanie z miejscem A na rybosomie aminoglikozydy zwiększają częstotliwość błędów w odczytywaniu mRNA. Ponadto higromycyna B hamuje etap translokacji podczas biosyntezy białka. Puromycyna zaś jest strukturalnym analogiem aminoacylo-tRNA i powoduje przedwczesną terminację syntezy białka zarówno w komórkach bakterii jak i eukariontów.

12



Wyszukiwarka

Podobne podstrony:
Zakład Biologii Molekularnej UMCS, luty 2015 UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ WYDZIAŁ BIOLOGII I
Zakład Biologii Molekularnej UMCS, luty 2015 starterów czy nieodpowiedniego stężenia jonów Mg+,
Zakład Biologii Molekularnej UMCS, luty 2015 9. Odczynniki i zestaw do elektroforezy kwasów nukleino
Zakład Biologii Molekularnej UMCS, luty 2015 Materiały i odczynniki 1.    Całonocne
Zakład Biologii Molekularnej UMCS, luty 201S i cykloheksimidu (CH), chloramfenikolu (C), streptomycy
Zakład Biologii Molekularnej UMCS, luty 2015Elektroforeza 2D jako narzędzie w diagnostyce chorób
Zakład Biologii Molekularnej UMCS, luty 2015 powtarzalności między rozdziałami tej samej próbki
Zakład Biologii Molekularnej UMCS, luty 2015 6 % CHAPS 80 mM Tris base 100 mM DTT - dodać bezpośredn
Zakład Biologii Molekularnej UMCS. luty 2015 6.    Zawiesinę mieszać poprzez vortekso
Zakład Biologii Molekularnej UMCS, luty 2015 Fot.GE Healtcare 14. Usunąć folię zabezpieczającą pasek
Zakład Biologii Molekularnej UMCS, luty 2015Spis treści: 1.    Izolacja genomowego DN
Zakład Biologii Molekularnej UMCS, luty 2015 a następnie od drugiego końca naczynia aż cały pasek z
Zakład Biologii Molekularnej UMCS, luty 2015Izolacja genomowego DNA z drożdży Saccharomyces
Zakład Biologii Molekularnej UMCS, luty 2015 Materiały i odczynniki 1.    12- godzinn
Zakład Biologii Molekularnej UMCS. luty 2015 4.    Uzyskane sferoplasty osadzić przez
Zakład Biologii Molekularnej UMCS, luty 2015 ELEKTROFORETYCZNY ROZDZIAŁ DNA W ŻELU AGAROZOWYM Agaroz
Zakład Biologii Molekularnej UMCS, luty 2015 Stosowane napięcie prądu podczas elektroforezy: Przy ni
Zakład Biologii Molekularnej UMCS, luty 2015 5.    Bromek etydyny 10 mg/ml 6.
Zakład Biologii Molekularnej UMCS, luty 2015Amplifikacja genów kodujących rybosomowe białka P1A i P1

więcej podobnych podstron