7884079634

7884079634



Fig. 5. Calculated heat losses (q2.q3.qi, qs) vs. stcam power for three levels of sloichiometric ratio at the cxit of the boiler (ab): (a) 1.45. (b) 1.5 and (c) 1.8. A 50% of bagasse moisture and an (dry) ash content of 4% have been considered.

Boiler design optimization is a very complex problem [7], requiring some assumptions to simplify its mathemat-ical treatment. In this study, to optimize the waste heat recovery scheme, the speed of the flue gas, steam, water and air flow are supposed to have their optimal values for all the heat transfer surfaces studied. At the same time, the fumace exit gas temperaturę is kept constant at 900 °C and the steam power is fixed at the nominał value of 45 t/h. It is also

necessary to consider the specific heat at the exit of the boiler and its average value at the different heat transfer surfaces to be independent of the stack temperaturę. The heat transfer coefficients should also be considered as independent of the optimized temperaturę.

To solve Eqs. (9) and (12), a thermal analysis of all the heat transfer surfaces in the boiler was first performed followed by a coupled mathematical and graphical analysis. The overall heat transfer coefficient (k) of each individual heat transfer surface considered in the analysis was initially computed using its own thermal equation. These equations are slightly different depending on the type of construction, flow arrangement, core configuration, etc. but they are always a function of local heat transfer coefficients, y\ and 72, and the thermal efficiency, 'P, according to the relation

k (kW/(m2 K)) =    (23)

(Ti + 72)

where subscript 1 means hot gas and 2 refers to the cold fluid (water, steam or air). A summary of the heat transfer coefficients for the different surfaces studied is presented in Table 1. Notę that for the bagasse dryer, the volumetric heat transfer coefficient is given in kW/(m3 K).

The economical cost of the individual heat transfer surface per area unit was calculated according to the principle of scaling economy [8] carefully detailed in Ref. [9], using the equation

where the same nomenclature as in Eq. (9) has been used. In this equation, subscript 1 is assigned to the known heat transfer surface and 2 refers to that to be calculated; a is a scaling exponent determined with the known cost and heat transfer area. Results for the individual heat transfer surfaces considered in this study are depicted in Table 2.



Wyszukiwarka

Podobne podstrony:
astro139 Diagramy Kolor - Jasność •10 12 B-V Fig. 2. CMDs with fitied i&ochrone for three cluste
44) ŁĄCZENIE KONDENSATORÓW. szeregów; vc• i/ci+U3+i«+_ qi q2-- q3-.....
Volmer 148 ADSORPTION Vol. 1 Fig. 4. Isosteric heat depending on relative pressurc (N2-Carbon syste
IMG25 III POSTULAT MECHANIKI KWANTOWEJ Zmiana funkcji falowej ¥ - ^(ą,,q2,q3,...,q3N,t) w czasie op
Zdjęcie0135 (5) Model matematyczny przekładni1)    QP=Qi, + Q* + Qs 2)   &n
PICT0203 Q1,Q2,Q3,Q4, RCA CA3146 TRANSISTOR ARRAY CALIB PATION: ADJU3T R1 FOR FULL SCALĘ DEFLEC
§3.5 Hoffman 1 Kunze Solutions p. 10ó ^ 2 Lot B = {oi,q2,q3} 1>c a basis for C3 dcfined by: «i =
73626 Zdjęcie0135 (5) Model matematyczny przekładni1)    QP=Qi, + Q* + Qs 2)  &n
Wartość opałowa gazu: Qi =Qs -m r=Qs - mskr - vgN gdzie: m - masa skroplin uzyskana ze spalenia
naprezenia *+* i frwMyg ***** i Q1 +Q2 + Q3 czyli tu liczysz naprężenie od siły 2 i dodajesz naprez
zestawzadazmechanikibud (2) ZADANIE Nr 4 Dany jest płaski równoległy układ sił Q,, Q2, Q3, Q4, prost
P3040751 węzeł 2:,I-Si^5 85din^ ha’ q2-s = Q3-*M 101 d“3/sha; ■ węzeł 1: 9. -z = ^§7 = 66
done 3p xq = ch + acosq2 + bcos(q2 + fo) <7i - q2asinq2 - (q2 + q3)bsin(q2 + q3) Ola manipulatora

więcej podobnych podstron