arm correlate f32 8c source


CMSIS DSP Software Library: arm_correlate_f32.c Source File Main Page Modules Data Structures Files Examples File List Globals arm_correlate_f32.c Go to the documentation of this file.00001 /* ---------------------------------------------------------------------------- 00002 * Copyright (C) 2010 ARM Limited. All rights reserved. 00003 * 00004 * $Date: 29. November 2010 00005 * $Revision: V1.0.3 00006 * 00007 * Project: CMSIS DSP Library 00008 * Title: arm_correlate_f32.c 00009 * 00010 * Description: Correlation for floating-point sequences. 00011 * 00012 * Target Processor: Cortex-M4/Cortex-M3 00013 * 00014 * Version 1.0.3 2010/11/29 00015 * Re-organized the CMSIS folders and updated documentation. 00016 * 00017 * Version 1.0.2 2010/11/11 00018 * Documentation updated. 00019 * 00020 * Version 1.0.1 2010/10/05 00021 * Production release and review comments incorporated. 00022 * 00023 * Version 1.0.0 2010/09/20 00024 * Production release and review comments incorporated 00025 * 00026 * Version 0.0.7 2010/06/10 00027 * Misra-C changes done 00028 * 00029 * -------------------------------------------------------------------------- */ 00030 00031 #include "arm_math.h" 00032 00088 void arm_correlate_f32( 00089 float32_t * pSrcA, 00090 uint32_t srcALen, 00091 float32_t * pSrcB, 00092 uint32_t srcBLen, 00093 float32_t * pDst) 00094 { 00095 float32_t *pIn1; /* inputA pointer */ 00096 float32_t *pIn2; /* inputB pointer */ 00097 float32_t *pOut = pDst; /* output pointer */ 00098 float32_t *px; /* Intermediate inputA pointer */ 00099 float32_t *py; /* Intermediate inputB pointer */ 00100 float32_t *pSrc1; /* Intermediate pointers */ 00101 float32_t sum, acc0, acc1, acc2, acc3; /* Accumulators */ 00102 float32_t x0, x1, x2, x3, c0; /* temporary variables for holding input and coefficient values */ 00103 uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3; /* loop counters */ 00104 int32_t inc = 1; /* Destination address modifier */ 00105 00106 00107 /* The algorithm implementation is based on the lengths of the inputs. */ 00108 /* srcB is always made to slide across srcA. */ 00109 /* So srcBLen is always considered as shorter or equal to srcALen */ 00110 /* But CORR(x, y) is reverse of CORR(y, x) */ 00111 /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */ 00112 /* and the destination pointer modifier, inc is set to -1 */ 00113 /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */ 00114 /* But to improve the performance, 00115 * we include zeroes in the output instead of zero padding either of the the inputs*/ 00116 /* If srcALen > srcBLen, 00117 * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */ 00118 /* If srcALen < srcBLen, 00119 * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */ 00120 if(srcALen >= srcBLen) 00121 { 00122 /* Initialization of inputA pointer */ 00123 pIn1 = pSrcA; 00124 00125 /* Initialization of inputB pointer */ 00126 pIn2 = pSrcB; 00127 00128 /* Number of output samples is calculated */ 00129 outBlockSize = (2u * srcALen) - 1u; 00130 00131 /* When srcALen > srcBLen, zero padding has to be done to srcB 00132 * to make their lengths equal. 00133 * Instead, (outBlockSize - (srcALen + srcBLen - 1)) 00134 * number of output samples are made zero */ 00135 j = outBlockSize - (srcALen + (srcBLen - 1u)); 00136 00137 while(j > 0u) 00138 { 00139 /* Zero is stored in the destination buffer */ 00140 *pOut++ = 0.0f; 00141 00142 /* Decrement the loop counter */ 00143 j--; 00144 } 00145 00146 } 00147 else 00148 { 00149 /* Initialization of inputA pointer */ 00150 pIn1 = pSrcB; 00151 00152 /* Initialization of inputB pointer */ 00153 pIn2 = pSrcA; 00154 00155 /* srcBLen is always considered as shorter or equal to srcALen */ 00156 j = srcBLen; 00157 srcBLen = srcALen; 00158 srcALen = j; 00159 00160 /* CORR(x, y) = Reverse order(CORR(y, x)) */ 00161 /* Hence set the destination pointer to point to the last output sample */ 00162 pOut = pDst + ((srcALen + srcBLen) - 2u); 00163 00164 /* Destination address modifier is set to -1 */ 00165 inc = -1; 00166 00167 } 00168 00169 /* The function is internally 00170 * divided into three parts according to the number of multiplications that has to be 00171 * taken place between inputA samples and inputB samples. In the first part of the 00172 * algorithm, the multiplications increase by one for every iteration. 00173 * In the second part of the algorithm, srcBLen number of multiplications are done. 00174 * In the third part of the algorithm, the multiplications decrease by one 00175 * for every iteration.*/ 00176 /* The algorithm is implemented in three stages. 00177 * The loop counters of each stage is initiated here. */ 00178 blockSize1 = srcBLen - 1u; 00179 blockSize2 = srcALen - (srcBLen - 1u); 00180 blockSize3 = blockSize1; 00181 00182 /* -------------------------- 00183 * Initializations of stage1 00184 * -------------------------*/ 00185 00186 /* sum = x[0] * y[srcBlen - 1] 00187 * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1] 00188 * .... 00189 * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1] 00190 */ 00191 00192 /* In this stage the MAC operations are increased by 1 for every iteration. 00193 The count variable holds the number of MAC operations performed */ 00194 count = 1u; 00195 00196 /* Working pointer of inputA */ 00197 px = pIn1; 00198 00199 /* Working pointer of inputB */ 00200 pSrc1 = pIn2 + (srcBLen - 1u); 00201 py = pSrc1; 00202 00203 /* ------------------------ 00204 * Stage1 process 00205 * ----------------------*/ 00206 00207 /* The first stage starts here */ 00208 while(blockSize1 > 0u) 00209 { 00210 /* Accumulator is made zero for every iteration */ 00211 sum = 0.0f; 00212 00213 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00214 k = count >> 2u; 00215 00216 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00217 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00218 while(k > 0u) 00219 { 00220 /* x[0] * y[srcBLen - 4] */ 00221 sum += *px++ * *py++; 00222 /* x[1] * y[srcBLen - 3] */ 00223 sum += *px++ * *py++; 00224 /* x[2] * y[srcBLen - 2] */ 00225 sum += *px++ * *py++; 00226 /* x[3] * y[srcBLen - 1] */ 00227 sum += *px++ * *py++; 00228 00229 /* Decrement the loop counter */ 00230 k--; 00231 } 00232 00233 /* If the count is not a multiple of 4, compute any remaining MACs here. 00234 ** No loop unrolling is used. */ 00235 k = count % 0x4u; 00236 00237 while(k > 0u) 00238 { 00239 /* Perform the multiply-accumulate */ 00240 /* x[0] * y[srcBLen - 1] */ 00241 sum += *px++ * *py++; 00242 00243 /* Decrement the loop counter */ 00244 k--; 00245 } 00246 00247 /* Store the result in the accumulator in the destination buffer. */ 00248 *pOut = sum; 00249 /* Destination pointer is updated according to the address modifier, inc */ 00250 pOut += inc; 00251 00252 /* Update the inputA and inputB pointers for next MAC calculation */ 00253 py = pSrc1 - count; 00254 px = pIn1; 00255 00256 /* Increment the MAC count */ 00257 count++; 00258 00259 /* Decrement the loop counter */ 00260 blockSize1--; 00261 } 00262 00263 /* -------------------------- 00264 * Initializations of stage2 00265 * ------------------------*/ 00266 00267 /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1] 00268 * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1] 00269 * .... 00270 * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00271 */ 00272 00273 /* Working pointer of inputA */ 00274 px = pIn1; 00275 00276 /* Working pointer of inputB */ 00277 py = pIn2; 00278 00279 /* count is index by which the pointer pIn1 to be incremented */ 00280 count = 1u; 00281 00282 /* ------------------- 00283 * Stage2 process 00284 * ------------------*/ 00285 00286 /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed. 00287 * So, to loop unroll over blockSize2, 00288 * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */ 00289 if(srcBLen >= 4u) 00290 { 00291 /* Loop unroll over blockSize2, by 4 */ 00292 blkCnt = blockSize2 >> 2u; 00293 00294 while(blkCnt > 0u) 00295 { 00296 /* Set all accumulators to zero */ 00297 acc0 = 0.0f; 00298 acc1 = 0.0f; 00299 acc2 = 0.0f; 00300 acc3 = 0.0f; 00301 00302 /* read x[0], x[1], x[2] samples */ 00303 x0 = *(px++); 00304 x1 = *(px++); 00305 x2 = *(px++); 00306 00307 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00308 k = srcBLen >> 2u; 00309 00310 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00311 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00312 do 00313 { 00314 /* Read y[0] sample */ 00315 c0 = *(py++); 00316 00317 /* Read x[3] sample */ 00318 x3 = *(px++); 00319 00320 /* Perform the multiply-accumulate */ 00321 /* acc0 += x[0] * y[0] */ 00322 acc0 += x0 * c0; 00323 /* acc1 += x[1] * y[0] */ 00324 acc1 += x1 * c0; 00325 /* acc2 += x[2] * y[0] */ 00326 acc2 += x2 * c0; 00327 /* acc3 += x[3] * y[0] */ 00328 acc3 += x3 * c0; 00329 00330 /* Read y[1] sample */ 00331 c0 = *(py++); 00332 00333 /* Read x[4] sample */ 00334 x0 = *(px++); 00335 00336 /* Perform the multiply-accumulate */ 00337 /* acc0 += x[1] * y[1] */ 00338 acc0 += x1 * c0; 00339 /* acc1 += x[2] * y[1] */ 00340 acc1 += x2 * c0; 00341 /* acc2 += x[3] * y[1] */ 00342 acc2 += x3 * c0; 00343 /* acc3 += x[4] * y[1] */ 00344 acc3 += x0 * c0; 00345 00346 /* Read y[2] sample */ 00347 c0 = *(py++); 00348 00349 /* Read x[5] sample */ 00350 x1 = *(px++); 00351 00352 /* Perform the multiply-accumulates */ 00353 /* acc0 += x[2] * y[2] */ 00354 acc0 += x2 * c0; 00355 /* acc1 += x[3] * y[2] */ 00356 acc1 += x3 * c0; 00357 /* acc2 += x[4] * y[2] */ 00358 acc2 += x0 * c0; 00359 /* acc3 += x[5] * y[2] */ 00360 acc3 += x1 * c0; 00361 00362 /* Read y[3] sample */ 00363 c0 = *(py++); 00364 00365 /* Read x[6] sample */ 00366 x2 = *(px++); 00367 00368 /* Perform the multiply-accumulates */ 00369 /* acc0 += x[3] * y[3] */ 00370 acc0 += x3 * c0; 00371 /* acc1 += x[4] * y[3] */ 00372 acc1 += x0 * c0; 00373 /* acc2 += x[5] * y[3] */ 00374 acc2 += x1 * c0; 00375 /* acc3 += x[6] * y[3] */ 00376 acc3 += x2 * c0; 00377 00378 00379 } while(--k); 00380 00381 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00382 ** No loop unrolling is used. */ 00383 k = srcBLen % 0x4u; 00384 00385 while(k > 0u) 00386 { 00387 /* Read y[4] sample */ 00388 c0 = *(py++); 00389 00390 /* Read x[7] sample */ 00391 x3 = *(px++); 00392 00393 /* Perform the multiply-accumulates */ 00394 /* acc0 += x[4] * y[4] */ 00395 acc0 += x0 * c0; 00396 /* acc1 += x[5] * y[4] */ 00397 acc1 += x1 * c0; 00398 /* acc2 += x[6] * y[4] */ 00399 acc2 += x2 * c0; 00400 /* acc3 += x[7] * y[4] */ 00401 acc3 += x3 * c0; 00402 00403 /* Reuse the present samples for the next MAC */ 00404 x0 = x1; 00405 x1 = x2; 00406 x2 = x3; 00407 00408 /* Decrement the loop counter */ 00409 k--; 00410 } 00411 00412 /* Store the result in the accumulator in the destination buffer. */ 00413 *pOut = acc0; 00414 /* Destination pointer is updated according to the address modifier, inc */ 00415 pOut += inc; 00416 00417 *pOut = acc1; 00418 pOut += inc; 00419 00420 *pOut = acc2; 00421 pOut += inc; 00422 00423 *pOut = acc3; 00424 pOut += inc; 00425 00426 /* Update the inputA and inputB pointers for next MAC calculation */ 00427 px = pIn1 + (count * 4u); 00428 py = pIn2; 00429 00430 /* Increment the pointer pIn1 index, count by 1 */ 00431 count++; 00432 00433 /* Decrement the loop counter */ 00434 blkCnt--; 00435 } 00436 00437 /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here. 00438 ** No loop unrolling is used. */ 00439 blkCnt = blockSize2 % 0x4u; 00440 00441 while(blkCnt > 0u) 00442 { 00443 /* Accumulator is made zero for every iteration */ 00444 sum = 0.0f; 00445 00446 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00447 k = srcBLen >> 2u; 00448 00449 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00450 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00451 while(k > 0u) 00452 { 00453 /* Perform the multiply-accumulates */ 00454 sum += *px++ * *py++; 00455 sum += *px++ * *py++; 00456 sum += *px++ * *py++; 00457 sum += *px++ * *py++; 00458 00459 /* Decrement the loop counter */ 00460 k--; 00461 } 00462 00463 /* If the srcBLen is not a multiple of 4, compute any remaining MACs here. 00464 ** No loop unrolling is used. */ 00465 k = srcBLen % 0x4u; 00466 00467 while(k > 0u) 00468 { 00469 /* Perform the multiply-accumulate */ 00470 sum += *px++ * *py++; 00471 00472 /* Decrement the loop counter */ 00473 k--; 00474 } 00475 00476 /* Store the result in the accumulator in the destination buffer. */ 00477 *pOut = sum; 00478 /* Destination pointer is updated according to the address modifier, inc */ 00479 pOut += inc; 00480 00481 /* Update the inputA and inputB pointers for next MAC calculation */ 00482 px = pIn1 + count; 00483 py = pIn2; 00484 00485 /* Increment the pointer pIn1 index, count by 1 */ 00486 count++; 00487 00488 /* Decrement the loop counter */ 00489 blkCnt--; 00490 } 00491 } 00492 else 00493 { 00494 /* If the srcBLen is not a multiple of 4, 00495 * the blockSize2 loop cannot be unrolled by 4 */ 00496 blkCnt = blockSize2; 00497 00498 while(blkCnt > 0u) 00499 { 00500 /* Accumulator is made zero for every iteration */ 00501 sum = 0.0f; 00502 00503 /* Loop over srcBLen */ 00504 k = srcBLen; 00505 00506 while(k > 0u) 00507 { 00508 /* Perform the multiply-accumulate */ 00509 sum += *px++ * *py++; 00510 00511 /* Decrement the loop counter */ 00512 k--; 00513 } 00514 00515 /* Store the result in the accumulator in the destination buffer. */ 00516 *pOut = sum; 00517 /* Destination pointer is updated according to the address modifier, inc */ 00518 pOut += inc; 00519 00520 /* Update the inputA and inputB pointers for next MAC calculation */ 00521 px = pIn1 + count; 00522 py = pIn2; 00523 00524 /* Increment the pointer pIn1 index, count by 1 */ 00525 count++; 00526 00527 /* Decrement the loop counter */ 00528 blkCnt--; 00529 } 00530 } 00531 00532 /* -------------------------- 00533 * Initializations of stage3 00534 * -------------------------*/ 00535 00536 /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00537 * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1] 00538 * .... 00539 * sum += x[srcALen-2] * y[0] + x[srcALen-1] * y[1] 00540 * sum += x[srcALen-1] * y[0] 00541 */ 00542 00543 /* In this stage the MAC operations are decreased by 1 for every iteration. 00544 The count variable holds the number of MAC operations performed */ 00545 count = srcBLen - 1u; 00546 00547 /* Working pointer of inputA */ 00548 pSrc1 = pIn1 + (srcALen - (srcBLen - 1u)); 00549 px = pSrc1; 00550 00551 /* Working pointer of inputB */ 00552 py = pIn2; 00553 00554 /* ------------------- 00555 * Stage3 process 00556 * ------------------*/ 00557 00558 while(blockSize3 > 0u) 00559 { 00560 /* Accumulator is made zero for every iteration */ 00561 sum = 0.0f; 00562 00563 /* Apply loop unrolling and compute 4 MACs simultaneously. */ 00564 k = count >> 2u; 00565 00566 /* First part of the processing with loop unrolling. Compute 4 MACs at a time. 00567 ** a second loop below computes MACs for the remaining 1 to 3 samples. */ 00568 while(k > 0u) 00569 { 00570 /* Perform the multiply-accumulates */ 00571 /* sum += x[srcALen - srcBLen + 4] * y[3] */ 00572 sum += *px++ * *py++; 00573 /* sum += x[srcALen - srcBLen + 3] * y[2] */ 00574 sum += *px++ * *py++; 00575 /* sum += x[srcALen - srcBLen + 2] * y[1] */ 00576 sum += *px++ * *py++; 00577 /* sum += x[srcALen - srcBLen + 1] * y[0] */ 00578 sum += *px++ * *py++; 00579 00580 /* Decrement the loop counter */ 00581 k--; 00582 } 00583 00584 /* If the count is not a multiple of 4, compute any remaining MACs here. 00585 ** No loop unrolling is used. */ 00586 k = count % 0x4u; 00587 00588 while(k > 0u) 00589 { 00590 /* Perform the multiply-accumulates */ 00591 sum += *px++ * *py++; 00592 00593 /* Decrement the loop counter */ 00594 k--; 00595 } 00596 00597 /* Store the result in the accumulator in the destination buffer. */ 00598 *pOut = sum; 00599 /* Destination pointer is updated according to the address modifier, inc */ 00600 pOut += inc; 00601 00602 /* Update the inputA and inputB pointers for next MAC calculation */ 00603 px = ++pSrc1; 00604 py = pIn2; 00605 00606 /* Decrement the MAC count */ 00607 count--; 00608 00609 /* Decrement the loop counter */ 00610 blockSize3--; 00611 } 00612 00613 } 00614  All Data Structures Files Functions Variables Typedefs Enumerations Enumerator Defines Generated on Mon Nov 29 2010 17:19:56 for CMSIS DSP Software Library by  1.7.2

Wyszukiwarka