475 478 5XDRGRTG3C4LKWO44KVALRS23UDVS44RGRFZ46Y




C++ Neural Networks and Fuzzy Logic:Applications of Fuzzy Logic
Click Here! function GetCookie (name) { var arg = name + "="; var alen = arg.length; var clen = document.cookie.length; var i = 0; while (i < clen) { var j = i + alen; if (document.cookie.substring(i, j) == arg) { var end = document.cookie.indexOf (";", j); if (end == -1) end = document.cookie.length; return unescape(document.cookie.substring(j, end)); } i = document.cookie.indexOf(" ", i) + 1; if (i == 0) break; } return null; } var m1=''; var gifstr=GetCookie("UsrType"); if((gifstr!=0 ) && (gifstr!=null)) { m2=gifstr; } document.write(m1+m2+m3);           Keyword Title Author ISBN Publisher Imprint Brief Full  Advanced      Search  Search Tips Please Select ----------- Components Content Mgt Certification Databases Enterprise Mgt Fun/Games Groupware Hardware Intranet Dev Middleware Multimedia Networks OS Prod Apps Programming Security UI Web Services Webmaster Y2K ----------- New Titles ----------- Free Archive




To access the contents, click the chapter and section titles.


C++ Neural Networks and Fuzzy Logic


(Publisher: IDG Books Worldwide, Inc.)

Author(s): Valluru B. Rao

ISBN: 1558515526

Publication Date: 06/01/95










Search this book:
 





















Previous
Table of Contents
Next




Databases and Queries
Imagine that you are interested in the travel business. You may be trying to design special tours in different countries with your own team of tour guides, etc. , and you want to identify suitable persons for these positions. Initially, let us say, you are interested in their own experiences in traveling, and the knowledge they possess, in terms of geography, customs, language, and special occasions, etc. The information you want to keep in your database may be something like, who the person is, the person’s citizenship, to where the person traveled, when such travel occurred, the length of stay at that destination, the person’s languages, the languages the person understands, the number of trips the person made to each place of travel, etc. Let us use some abbreviations:




cov—country visited

lov—length of visit (days)

nov—number of visits including previous visits

ctz—citizenship

yov—year of visit

lps—language (other than mother tongue) with proficiency to speak

lpu—language with only proficiency to understand

hs—history was studied (1—yes, 0—no)



Typical entries may appear as noted in Table 16.1.

Table 16.1 Example Database



Name
age
ctz
cov
lov
nov
yov
lps
lpu
hs

John Smith
35
U.S.
India
4
1
1994

Hindi
1

John Smith
35
U.S.
Italy
7
2
1991
Italian

1

John Smith
35
U.S.
Japan
3
1
1993


0



When a query is made to list persons that visited India or Japan after 1992 for 3 or more days, John Smith’s two entries will be included. The conditions stated for this query are straightforward, with lov [ge] 3 and yov > 1992 and (cov = India or cov = Japan).

Relations in Databases
A relation from this database may be the set of quintuples, (name, age, cov, lov, yov). Another may be the set of triples, (name, ctz, lps). The quintuple (John Smith, 35, India, 4, 1994) belongs to the former relation, and the triple (John Smith, U.S., Italian) belongs to the latter. You can define other relations, as well.

Fuzzy Scenarios
Now the query part may be made fuzzy by asking to list young persons who recently visited Japan or India for a few days. John Smith’s entries may or may not be included this time since it is not clear if John Smith is considered young, or whether 1993 is considered recent, or if 3 days would qualify as a few days for the query. This modification of the query illustrates one of three scenarios in which fuzziness can be introduced into databases and their use.

This is the case where the database and relations are standard, but the queries may be fuzzy. The other cases are: one where the database is fuzzy, but the queries are standard with no ambiguity; and one where you have both a fuzzy database and some fuzzy queries.
Fuzzy Sets Revisited
We will illustrate the concept of fuzziness in the case where the database and the queries have fuzziness in them. Our discussion is guided by the reference Terano, Asai, and Sugeno. First, let us review and recast the concept of a fuzzy set in a slightly different notation.

If a, b, c, and d are in the set A with 0.9, 0.4, 0.5, 0, respectively, as degrees of membership, and in B with 0.9, 0.6, 0.3, 0.8, respectively, we give these fuzzy sets A and B as A = { 0.9/a, 0.4/b, 0.5/c} and B = {0.9/a, 0.6/b, 0.3/c, 0.8/d}. Now A[cup]B = {0.9/a, 0.6/b, 0.5/c, 0.8/d} since you take the larger of the degrees of membership in A and B for each element. Also, A[cap]B = {0.9/a, 0.4/b, 0.3/c} since you now take the smaller of the degrees of membership in A and B for each element. Since d has 0 as degree of membership in A (it is therefore not listed in A), it is not listed in A[cap]B.
Let us impart fuzzy values (FV) to each of the attributes, age, lov, nov, yov, and hs by defining the sets in Table 16.2.
Table 16.2 Fuzzy Values for Example Sets



Fuzzy Value
Set

FV(age)
{ very young, young, somewhat old, old }

FV(nov)
{ never, rarely, quite a few, often, very often }

FV(lov)
{ barely few days, few days, quite a few days, many days }

FV(yov)
{distant past, recent past, recent }

FV(hs)
{ barely, adequately, quite a bit, extensively }



The attributes of name, citizenship, country of visit are clearly not candidates for having fuzzy values. The attributes of lps, and lpu, which stand for language in which speaking proficiency and language in which understanding ability exist, can be coupled into another attribute called flp (foreign language proficiency) with fuzzy values. We could have introduced in the original list an attribute called lpr ( language with proficiency to read) along with lps and lpu. As you can see, these three can be taken together into the fuzzy-valued attribute of foreign language proficiency. We give below the fuzzy values of flp.


FV(flp) = {not proficient, barely proficient, adequate,
proficient, very proficient }


Note that each fuzzy value of each attribute gives rise to a fuzzy set, which depends on the elements you consider for the set and their degrees of membership.




Previous
Table of Contents
Next






Products |  Contact Us |  About Us |  Privacy  |  Ad Info  |  Home Use of this site is subject to certain Terms & Conditions, Copyright © 1996-1999 EarthWeb Inc. All rights reserved. Reproduction whole or in part in any form or medium without express written permision of EarthWeb is prohibited.



Wyszukiwarka

Podobne podstrony:
478 18
478 19
Kochać inaczej De Mono linia 4 45 d 48 478 0 nev
473 475
478 15
index (478)
475 (2)
478 07
01 (475)
474 478
478 22
478 17

więcej podobnych podstron